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Stochastic Schr6dinger Equation from an 
Interaction with the Environment 

Z. H a b a  I 

Received November 30, 1995 

We consider a class of models describing a quantum oscillator in interaction with 
an environment. We show that models of continuous spontaneous localization 
based on a stochastic SchriSdinger equation can be derived as an approximation 
to purely deterministic Hamiltonian systems. 

1. INTRODUCTION 

Conventional quantum mechanics assumes a sharp division of the world 
into the microworld of the system and the macroworld of the measuring 
devices. Such a theory can be considered as a theory of an ideal measurement. 
However, in contemporary mesoscopic physics such a division may be not 
adequate. We can imagine a direct observation of a mesoscopic body inter- 
acting with an invisible microparticle system. Such a record cannot be consid- 
ered as a measurement in conventional quantum mechanics (e.g., the behavior 
of the mesoscopic body can be reversible). Nevertheless, it gives us some 
information about the microsystem. Such a situation inspires the study of the 
influence of a large (possibly infinite) system on the behavior of a single 
particle. It seems that together with an investigation of the classical limit of 
quantum mechanics done at the level of the wave function a study of the 
classical limit of the quantum theory of measurement is needed as well. It 
is well known that we encounter difficulties with an interpretation of quantum 
mechanics if it is applied to macroscopic bodies. However, it may be that 
the troublesome interference principle has no observational consequences 
when applied to realistic macroscopic bodies [apart from interesting situations 
on the boundary of the quantum and classical worlds (Leggett, 1980; Caldeira 
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and Leggett, 1983)]. Research in this field (which could in general be called 
the problem of decoherence) has increased recently (Zurek, 1982, 1991; 
Unruh and Zurek, 1989; Gell-Mann and Hartle, 1993; Dowker and Halliwell, 
1992; Omnes, 1990; Joos and Zeh, 1985; Joos, 1987). The problem ofdecoher- 
ence seems to be closely related (Diosi et  al.,  1995) to another old problem 
of quantum measurement theory, that of the reduction of the wave packet. 
There has recently appeared a conceptually simple theory of the wave packet 
reduction (Ghirardi et al., 1990; Pearl, 1989; Gisin and Percival, 1992). In 
this theory the wave packet reduction is achieved through the addition of 
noise to the SchrOdinger equation. Such a theory could be considered either 
as a phenomenological description of experiments (Joos and Zeh, 1985; Joos, 
1987), or as a fundamental modification of quantum mechanics which is 
supposed to describe both microworld and macroworld (Ghirardi et  al., 1986, 
1990; Pearl, 1989). 

In this paper we do not intend to enter into basic epistemological prob- 
lems. We investigate some simple models of an interaction of an oscillator 
with a reservoir [the simplest one is a textbook example (Louisell, 1973; 
Haken, 1986)]. The model is usually considered as a typical application of 
the quantum Langevin equation. We have shown (Haba, 1993, 1994a) that 
quantum dynamics can be expressed in terms of conventional diffusion pro- 
cesses (time-ordering replaces the noncommutativity). Such a stochastic 
description can be considered as a mathematical version of the Feynman path 
integral (Haba, 1994b). We think that such an approach is especially useful 
for a description of the dynamics of a subsystem. We can investigate the 
dynamics of a subsystem through an exact elimination of the coordinates of 
the environment [such a description is well known for classical stochastic 
systems (Zwanzig, 1973)]. In principle, this is the same strategy as suggested 
first by Feynman and Vernon (1963) and applied, e.g., by Leggett (1980), 
Caldeira and Leggett (1983), Zurek (1982), and Unruh and Zurek (1989). 
However, instead of using the path integral, we eliminate the coordinates of 
the environment on the level of stochastic equations. We get (without any 
approximation) closed equations for a particle moving in a reservoir. Our 
approach is based on the classical probability applied as a technical tool to 
standard quantum mechanics. 

It comes out from our study that a noise which initially enters the 
calculations as a technical tool acquires the properties and functions of a 
physical noise. The Brownian motion, which initially is a realization of the 
sum over paths describing via the Feynman formula the unitary Schrrdinger 
evolution, acquires an interpretation as a dissipation when we pass to the 
subsystem. There is still another source of noise (which we call a deterministic 
noise). The reservoir degrees of freedom evolving according to the determinis- 
tic Schrrdinger dynamics in the limit of an infinite number of degrees of 
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freedom model quite well the white noise. This model of noise is similar to 
the mechanical model of Brownian motion discussed by Ford et al. (1965). 
We show that the Brownian noise together with the deterministic noise give 
in a proper limit the stochastic Schr6dinger equation. As a consequence 
of the stochastic SchrOdinger equation we obtain a model of a continuous 
spontaneous localization (Ghirardi et al., 1990; Pearl, 1989). We show that 
in the energy representation the non-diagonal density matrix elements decay 
exponentially to zero. A localization in momentum (or space) is shown to 
hold true only in a limit of small (resp. large) oscillator frequency. 

2. STOCHASTIC REPRESENTATION OF QUANTUM 
DYNAMICS 

In Haba (1993, 1994a,b) we described the unitary Hamiltonian time 
evolution of pure states in terms of the Brownian motion. This formalism 
can be considered as a mathematical version of the Feynman path integral. 
On a formal level the method consists in the replacement of the integral over 
real paths q(.) by an integral over complex paths ,fiq(.) (where i is the 
imaginary unit). As a next step we change variables in the functional integral. 
The change of variables is expressed as a solution of a stochastic differential 
equation (depending on the Brownian motion). Then, the non-Gaussian func- 
tional integral can be reduced to the Gaussian integral over solutions of the 
stochastic equation. The aim of this formalism is to express in an explicit form 
the solution of the Schr0dinger equation. Hence, it is completely equivalent to 
standard quantum mechanics. 

Let Ut (t -> 0) be a unitary SchrOdinger evolution determined by the 
Hamiltonian 

1 
H = - h  2~mm A + V (1) 

Assume we knt)w I• = UII • [• will denote I• in the coordinate 
representation, where x ~ Rn]. Let the initial condition ~ for the SchrOdinger 
equation be of the form ~(x) = X(x)d0(x), where d~ is an analytic function. 
Then the solution ~t of the Schr6dinger equation with the initial condition 

can be expressed as • where dpt is the solution of the equation 

i~ ih 
c~td~t = ~ Adpt + --m Xt1VXtVd~' (2) 

with the initial condition d~. 
We express the solution of equation (2) by a stochastic process (Haba, 

1993) [for time-dependent diffusions see Freidlin (1985)]. Then the unitary 
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Schr6dinger evolution generated by the Hamiltonian (1) can be expressed in 
the form 

(Utt~)(x) = X,(x)E[d~(qt(x))] (3) 

where q,(x) is a complex diffusion process starting at t = 0 from x and solving 
the stochastic differential equation (here 0 --< "r --< t) 

dq~, = ih XTJ.~V• d'r + ho" dbT (4) 
m 

where 

and 

1 
X = - ~  (1 + i )  

o 

The Brownian motion bt is defined as the Gaussian process with independent 
increments and the variance 

E[b 2] = t 

In order to express the solution of the SchrOdinger equation for negative time 
we can apply the complex conjugation 

The action of arbitrary operators on states as well as correlation functions 
in arbitrary states can now be expressed as expectation values with respect 
to the Brownian motion (Haba, 1993). For example, 

(xIF(x,)G(x)Ix) = (X I U+F(x)UtG(x)Ix) 

= E l i  dx IX,(X)12F(x)G(qt(x))] (5) 

When F = 1, then equation (5) expresses a generalization of the notion of 
an invariant measure to time-inhomogeneous processes [if • is a stationary 
state, then I • 12 is exactly the invariant measure for qt (Freidlin, 1985)], i.e., 

E[;  dx lx,(x)12G(q,(x))] = I dx lx(x)12G(x) 

Let us consider as an example a model of independent oscillators with 
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m = 1 (here and later we do not specify the number of oscillators; it can 
be infinite): 

h 2 a 2 1 tok2 ~ (6) 

The ground-state solution of the Schr'odinger equation with the Hamiltonian 
(6) reads 

The stochastic equation (4) takes the form 

dqk = --ito,qk dt + ~r  dbk (8) 

The solution of equation (8) with the initial condition x reads 
' 

qk(s) = exp(-i~ks)  xk + h~ exp(-i~k(s - "r)) dbk('r) (9) 

3. AN INTERACTION W I T H  THE ENVIRONMENT 

The formalism of Section 2 can easily be applied to Hamiltonians with 
explicitly known Xt. An example of such a class of models are Hamiltonians 
(often encountered in quantum optics) of the form 

+ + Hs = ~ hv.v(a, A )A~Av (10) 
IJ.V 

where A~ is the annihilation operator, A~ the creation operator, and the Greek 
index indicates the space coordinate. In the case of the Hamiltonian (10) the 
harmonic oscillator's ground state (7) is also the ground state of Hs. Hence, 
we may take • as • in equation (3). 

We add to Hs the coupling to the reservoir. In this paper we restrict 
ourselves to the simplest one-dimensional model corresponding to h = 1. In 
such a case we obtain a standard model of an interaction with the environment 
[see Louisell (1973) and Haken (1986) and for a more recent review Ford 
et al. (1988)] 

n = ht%A+A + ~ htoka~ak + ~ gkA+ak + ~-~a~A (11) 
k k 

Schr6dinger representation of the creation and annihilation Using the 
operators 

' ~  
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we express H in the form (1). It is clear that the product of oscillator ground 
states is the ground state for H. In order to simplify the discussion we 
assume that 

g, = iv, 

are purely imaginary [if g, had a real part, this would change only the form 
of the noise in the stochastic equation (4)]. Then, taking as • in equation (4) 
the ground state (of Q and qk oscillators), we obtain the following equations: 

[tOo~ ''2 
dqk = -ito,qk dt + v,[-~,} Q dt + htr dbk (12) 

dQ = -itooQ dt - ~ v,|-55-1 q~ dt + htr db (13) 
k \ ~oo / 

We solve first equation (12) for qk. We obtain 

qk(t)  = exp(--it~kt) X, 

.Io + vkk-'~,) e x p ( - R o , ( , -  s))Q(s)ds 

+ h<r exp(--imk(t -- s))dbk(s) (14) 

Let us introduce the notation 

[to,~ 't2 

and 

exp(-ioJ,s) (15) 

fl NR(S) = her 2~ v*~-O~oo ) exp(--ito,(s -- x)) dbk('r) (16) 

corresponding to a "deterministic" and a random noise, respectively. We are 
interested in a computation of correlation functions in equation (5) with • 
defined in equation (7). In such computations the x, play the role of indepen- 
dent Gaussian random variables with the covariance 

E[xkXr ] = h ~kr (17) 
2tOk 

Hence, the noise AID is a Gaussian complex stochastic process with the 
covariance 
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h 
E[ND(s)ND(r)] = ~oOo ~k v2 exp(--kok(r + s)) (18) 

h 
E[ND(s)NI)(r)] = ~ ~k v2 exp(--itok(x -- s)) 

This noise is of the same order as the NR noise (16). Next, let us denote 

K(s) = ~ v 2 exp(-ito~s) (19) 
k 

We insert the solution qt of equation (12) into equation (13) for Q. We obtain 
an equation describing an oscillator moving in a reservoir 

dQ = -icooQ dT - K(~ - s)Q(s) ds dr - ND(r) dr (20) 

- NR(r) dr + her db 

It can be seen from equation (19) that K(s) is positive for small s, hence it 
fulfills the role of a dissipation. No, NR, and b add to a random external force. 

4. STOCHASTIC SCHR()DINGER EQUATION FROM AN 
INTERACTION WITH THE ENVIRONMENT 

In Leggett (1980), Caldeira and Leggett (1983), Zurek (1982), Unruh 
and Zurek (1989), Gell-Mann and Hartle (1993), Dowker and Halliwell 
(1992), and Omnes (1990) the classical behavior of quantum systems of 
the type (11) (in particular the decoherence) is explained by means of the 
Feynman-Vernon influence functional. This functional results from an aver- 
age over environmental degrees of freedom. We could derive it explicitly 
from the solution of equation (20). There is another theory of decoherence. 
Ghirardi et al. (1990), Pearl (1989), and Gisin and Percival (1992) explain 
the emergence of.classical properties through the addition of some stochastic 
terms to the Schrrdinger equation. In spite of the ardent opposition of the 
two groups [see the letters in Physics Today (1993)], we would like to 
reconcile the two approaches. We restrict ourselves here to the model (11). 
In equation (20) the time evolution of the coordinate Q is influenced by the 
environment through the additional noise terms NR and ND. The term NR 
[equation (16)] can be considered as a randomness resulting from the Feynman 
sum over paths (Haba, 1994b) (weighted sum over paths instead of the 
classical extremal path). The "deterministic" noise ND [equation (15)] is 
produced by the environment of oscillators evolving in a deterministic way 
according to the Schrrdinger evolution determined by the Hamiltonian (11). 
We can show that similarly as in the model of Ford et al. (1965), the 



2468 Haba 

environment can influence the system as a random force of the form of the 
white noise. We note first that if in equation (18) Vk ~- const and tok -- k, 
then the noise ND(s) is strongly correlated only at coinciding arguments. 
Under these assumptions on vk and tok the dissipation kernel K(s) in equation 
(19) can now be approximated by (such a behavior of K is sometimes called 
the Ohm dissipation) 

K(s) = aS(s) 

where a is a positive constant. In fact, we get such a formula if tok = kto, 
where k a [0, co], and v~ = (a/~r)toAk. In such a case the sum over infinitesimal 
Ak can be replaced by an integral 

Ii ~ dk exp(-iktos) = ~ ~(s) i 
to s to  

The term s- i is considered small in comparison to ~(s). The correspond- 
ing choice of v~ leads to the following approximation to No [again the term 
(t - s) -I is neglected] 

E[Nt~(s)ND(t)] = 0 (21) 

E[ND(s)No(t)] = h ~ ( t  - s) 

where 

a 
E -  

2to0 

So, ND is the white noise. We denote the corresponding Brownian motion 
by BD, i.e., 

dBD 
- N D  

ds 

Next, let us consider the "quantum" noise Ng [equation (16)] in more detail. 
Let us compute its correlation functions: 

h 
E[NR(s)NR('r)] = ~ 0  ~k v~(exp(-itokl'r - s I) - exp(-itok('r + s))) 

E[Nr~(s)NR('r)] = h min(s, 'r) 1 ~ tokv~ exp(itok(s - "r)) (22) 
tOo k 

In the approximation of the Ohm dissipation we get by the same arguments 
as applied in the derivation of equation (21) 

E[NR(s)NR(r)] = h ~ ( s  - "r) (23) 
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Equation (23) means that NR is the real white noise [the second of the 
expectation values in (22) does not enter any subsequent formulas]. We 
denote the integral of NR by BR (the real Brownian motion independent of 
BD). Equation (20) now reads 

dQ = - i tooQ ds - aQ ds - dBD(s) - dBR(s) + Xcr db(s) (24) 

[all the noise terms on the right-hand side of equation (24) are independent]. 
The dynamics of a subsystem is usually investigated in terms of the 

time evolution of its density matrix. We define the density matrix of a 
subsystem (with coordinates X) as 

X') = I ~ dxk p(X, x; x, X') (25) pe(X, 

We make the usual assumption that initially the system and the environment 
are separated, i.e., p is of the product form 

(oo ) 
p(X, x; x, X') = exp -~-~ (X ~ + X '2) v(JOv(X')po(x, x) 

We have expressed the initial wave function of the subsystem as a product 
of the ground-state wave function [with m = II and arbitrary v(JO [this is a 
proper choice for the class of models (10)-(11)1. We choose for P0 the 
probability density in the ground state (7). This is a reasonable assumption 
for the reservoir at zero temperature [the stochastic formalism of Section 2 
at positive temperature is discussed in Haba (1995)]. 

We can express in a simple way the evolution of subsystem's density 
matrix in terms of the Brownian motion 

pe(t; X, X') 

�9 = ~ d x k e x p  (X 2 + X  '2) I• l 2 

X E[v(Q,(X))IE[v(Q,(X'))I  (26) 

For the model (11) the stochastic process Q is the solution of equation (20). 
When we apply the definition of the noise No [equations (15) and (17)] then 
the integration over Xk can be expressed as an average over N~, 

pe(t; X, X') ~- exp -~-~ (X 2 + X '2) 

X ED[E[v(Q,(JO)IE[v(Q,(X'))I] (27) 
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where E[..] means the expectation value with respect to the Brownian motion 
b and Eo means that the integration over x is replaced by an expectation 
value with respect to the complex white noise ND. An application of the 
standard Ito stochastic calculus (see, e.g., Gikhman and Skorohod, 1972) 
shows that v(Q,) satisfies the Ito equation 

Ov 
dv = - ~  (-ioJoQ ds - aQ ds - dBo(s) - dBR + Mr db) 

h 02v 
+ � 9  + i) ds (28) 

The wave function 0(X) = exp(-tooX212h)v(X) satisfies the stochastic SchrOd- 
inger equation 

exp -tOo ~ d exp tOo ~ dg = - g  Hot~ ds - g Hod~ ds 

- LO(dBo(s) + dBR(S)) + hcrLd~ db(s) (29) 

where H0 is the Hamiltonian of the oscillator [the formula (6) for the too- 
oscillator] 

L = O +too 
T x 

We can derive the master equation for Pe from equation (27) without any 
further approximation. For this purpose we differentiate Pe in equation (27) 
and apply equation (29). Then, elementary rules of the stochastic calculus 
(Gildaman and Skorohod, 1972) lead to the formula 

i �9 
Otpe = - h  [H0, pp] - ~ (Hope + peHo) + h~LppL + (30) 

We have obtained the master equation exactly in the Lindblad form (Lindblad, 
1975; Gorini et al., 1976) as 

h 2 
Ho = -~ L+L 

The approximation which leads to the stochastic equation (29) is a Markovian 
approximation implying linear differential equations for the density matrix. 
The Lindblad form of the evolution equation ensures that the evolution 
preserves the normalization of the density matrix and its positivity. 

If pe(t) is of the form (27) then at fixed h and t --4 on pc(t) --41X0)(X01 
where I • is the oscillator ground state. Let us consider another limit when 
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the quantum numbers tend to infinity while h tends to zero in such a way 
that energies remain finite. We consider equation (30) in the energy representa- 
tion. Let I k) be the kth eigenstate of H0. Then equation (30) for matrix 
elements reads (for a derivation it is sufficient to notice that L is proportional 
to the annihilation operator) 

0,(jl pp I k) = -ioJo(j - k)(jl Pe I k) - eto0(.j + k)~jl Pe I k) 

+ 2E~o0x/(j + l)(k + l)(j + l l pe lk  + 1) (31) 

For large j and k for operators whose matrix elements have a limit h --) 0 
(jipp[k) = (j + 11pelk + 1). Applying this approximation to the last term 
in equation (31), we obtain the solution 

i (E~ - Ek)t -- -~(v/~j -- x/~k)2t (jlpe(0)lk) (32) ( j lpe( t )  lk) = exp - ~  

where we denoted by Ek the kth energy eigenvalue. Equation (32) shows that 
the interference disappears on a time scale proportional to the inverse of the 
energy difference, Hence, there is no interference of states with macroscopi- 
caUy distinguishable energies. There is still another interpretation of the result. 
Assume that in the framework of quantum mechanics of closed systems with 
the conventional wave packet reduction postulate an apparatus performed a 
measurement of the energy eigenvalues, but the results are unknown. Then 
the state of the system after the measurement is described by the solution 
(32) at large time. In this sense the interaction with an environment produces 
the same effect as a measurement. 

If we consider equation (30) in the momentum representation and assume 
o~oX 2 ---- 0, so that we can neglect the oscillator potential energy in comparison 
with the kinetic energy, then from equation (30) we get approximately 

E 
3 , ( p l p e l p ' )  ~-- -~ -h  (p  - p ' )2(plpl ,  lp ' )  (33) 

Equation (33) means a localization in momentum. If on the other hand we 
assume that OJo X2 is large in comparison with the kinetic energy, then neglect- 
ing the momenta in equation (30), we get in the position representation 

3t(Xlpl ,  IX ' )  - h (X  - X')Z(XIot~IX ') (34) 

i.e., a decoherence in space. 

5. SUMMARY AND DISCUSSION 

We have discussed a description of the dynamics of a subsystem which 
clearly displays the dissipation and noise in the subsystem. It is shown in a 
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simple model that some classical properties can emerge in quantum systems 
from an interaction with a large (quantum) environment. In particular, we 
have derived a stochastic SchrOdinger equation discussed in the theory of 
measurement. 

The theory of an interaction of microscopic and macroscopic bodies 
based on the stochastic Schrrdinger equation has some appealing features. 
It describes the dynamics of decoherence and localization in a model-indepen- 
dent way. However, we think that the microworld and macroworid will meet 
in conventional quantum mechanics. In such a case the problem of the 
consistency of the deterministic (in the sense of the SchrOdinger time evolu- 
tion) and stochastic evolutions will emerge. This was our motivation for an 
investigation of the stochastic Schrrdinger equation as a consequence of a 
deterministic model. The stochastic Schrrdinger equation derived in Section 
4 seems to be a realistic approximation to the time evolution in a reservoir. 
Surprisingly, it resembles a model of Ghirardi et al. (1990) and Pearl (1989) 
for a continuous spontaneous localization during the energy measurement. 
A measurement of another observable needs another environment which in 
general would be difficult to define explicitly. However, it is important to 
enquire whether we can reduce the number of basic principles of quantum 
mechanics without any modification of the Schrrdinger equation and the 
superposition principle. 
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